Table 3 Calculation of Convergence Scores

Similarity Score for Policy-	(1)	$\begin{array}{l} SP_{x, \underline{AB}} = 1 \iff P_{x,A} = P_{x,B} > 0 \\ SP_{x, \underline{AB}} = 0 \iff P_{x,A} \neq P_{x,B} > 0 \end{array}$
Presence and Instruments Dimension	(1)	$\operatorname{Sr}_{\mathrm{x}, \underline{\mathrm{AB}}} = 0 \iff \operatorname{r}_{\mathrm{x}, \mathrm{A}} \neq \operatorname{r}_{\mathrm{x}, \mathrm{B}} > 0$
		$SI_{y, \underline{AB}} = 1 \iff I_{y,A} = I_{y,B} > 0$
	(2)	$SI_{y, \underline{AB}} = 0 \iff I_{y,A} \neq I_{y,B} > 0$
		SP_x refers to the similarity of policy x, SI_v to the similarity of instrument
		y, P_x to the presence of policy x and I_y to the instrument y, and <u>AB</u> to the
		f_{x} is the presence of points which by to the instrument f_{y} and $\underline{f_{x}}$ to the dyad of countries A and B.
Similarity Score for Settings Dimension	(3)	$SS_{z, \underline{AB}} = 1 - \frac{ S_{z,A} - S_{z,B} }{S_{z,90} - S_{z,10}}$
	(0)	$SO_{z}, \underline{MD} = 1$ $S_{z,90} - S_{z,10}$
		where SS_Z is the similarity of setting z, $S_{z,A}$ and $S_{z,B}$ the level of policy
		setting z for countries A and B and $S_{z,90}$ and $S_{z,10}$ the 90% and the 10%
		quantile of the empirical distribution of setting z in the sample.
Calculation of Convergence Scores		$CP_{x \Delta t1; \Delta B} = SP_{x,t1; \Delta B} - SP_{x,t0;\Delta B}$
	(4)	$CI_{x \Delta t1; \underline{AB}} = SI_{x,t1; \underline{AB}} = SI_{x,t0; \underline{AB}}$ $CI_{y \Delta t1; \underline{AB}} = SI_{y,t1; \underline{AB}} - SI_{y,t0; \underline{AB}}$
		$CS_{z \Delta t1; \underline{AB}} = SS_{z,t1; \underline{AB}} - SS_{z,t0; \underline{AB}}$
		where CP_x is the convergence of policy x, CI_y the convergence of
		instrument y and CS_z the changes in similarity scores of setting z,
		$SP_{x,t1(t0)}$, $SI_{y,t1(t0)}$, $SS_{z,t1(t0)}$, similarity scores at $t_1(t_0)$ and Δt_1 the period
		between t_0 and t_1 .
Aggregation of Convergence Scores		$\sum_{x_{i1}}^{x_{i1}} CP_{x_{i1},\Delta t_{1};\underline{AB}} = \frac{\sum_{x_{11}}^{x_{11}} SP_{x_{i1},t_{1};\underline{AB}} - SP_{x_{i1},t_{0},\underline{AB}}}{n-k}$
		$\sum CP_{xi,\Delta ti;AB} = \frac{x_i}{x_i}$
		n - k
		<u>yn</u>
		$\sum_{y_1}^{y_n} CI_{y_i, \Delta t_1; \underline{AB}} = \frac{\sum_{x_1}^{y_n} SI_{y_i, t_1; \underline{AB}} - SI_{y_i, t_0, \underline{AB}}}{n - k}$
		$\sum CI_{y_i, \Delta I_i; \underline{AB}} = \frac{x_i}{1}$
	(5)	уı n - К
	(5)	211
		$\sum_{z_n}^{z_n} SS_{zi, ti; \underline{AB}} - SS_{zi, to, \underline{AB}}$
		$\sum_{z_1}^{\infty} CS_{z_1, \Delta t_1; \underline{AB}} = \frac{\overline{z_1}}{n - k}$
		z1 II - K
		where <i>n</i> is the size of the subgroup of policies x_i , instruments y_i , and
		settings z_i and $k \in \{1, 2,, n\}$ is the number of policies, instruments,
		or settings with $SP_{xi, t0; AB} = SP_{xi, t1; AB} = 1$ ($SI_{yi, t0; AB} = SI_{yi, t1; AB} = 1$ or
		$SS_{zi, t0; \underline{AB}} = SS_{zi, t1; \underline{AB}} = 1$). The difference is weighted not by the number

of policy items but with the factor 1/(n-k).